

Quality control of corpus annotation through reliability measures

Ron Artstein

Department of Computer Science University of Essex artstein@essex.ac.uk

> ACL-2007 tutorial 24 June 2007

Thanks to EPSRC grant GR/S76434/01, ARRAU (Anaphora Resolution and Underspecification)

- 王王 - 王王

Annotated corpora are needed for:

- Supervised learning training and evaluation
- Unsupervised learning evaluation
- Hand-crafted systems evaluation
- Analysis of text

Quality control:

• Annotations need to be correct.

Correctness and reliability

Systems are evaluated with respect to a standard

• standard taken to be correct

During corpus creation, no standard exists

- As a minimum, annotation should be reliable
- Qualitative evaluation also necessary

Reliability and agreement

Reliability = **consistency**

- Needs to be measured on the same text
- Different annotators

If independent annotators mark a text the same way,

- they have internalized the same scheme (instructions)
- will apply it consistently to new data
- annotations might be correct

Reliability data

- Sample of the corpus
- Multiple annotators

Annotators must work independently

• Otherwise we can't compare them

Results do not generalize from one domain to another

- Annotators internalized a scheme for newswire corpus
- They may apply it differently to email corpus

Two coders Many coders Weighted coefficients

Agreement measures are not hypothesis tests

- Evaluating magnitude, not existence/lack of effect
- Not comparing two hypotheses
- No clear probabilistic interpretation

Observed agreement: proportion of items on which 2 coders agree.

Detailed Listing

Contingency Table

ltem	Coder 1	Coder 2		Boxcar	Tanker	Total
а	Boxcar	Tanker	Boxcar	41	3	44
b	Tanker	Boxcar	Tanker	9	47	56
с	Boxcar	Boxcar	Total	50	50	100
d	Boxcar	Tanker				
е	Tanker	Tanker		41 + 4	17	
f	Tanker	Tanker	Agreemer	$nt: \frac{12}{100}$	$\frac{17}{-} = 0.88$	
	÷	÷				

<ロト <同ト < 国ト < 国

_

Some agreement is expected by chance alone.

- Two coders randomly assigning "Boxcar" and "Tanker" labels will agree half of the time.
- The amount expected by chance varies depending on the annotation scheme and on the annotated data.

Meaningful agreement is the agreement above chance.

• Similar to the concept of "baseline" for system evaluation.

イロト イポト イラト イラト

Correction for chance

How much of the observed agreement is above chance?

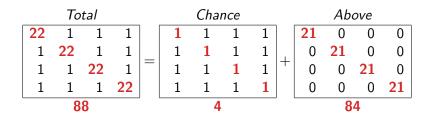
	A	В	Total	Total	Chance	Above
А	44	6	50	44 6	6 6	38 0
В	6	44	50	6 44 =	6 6	0 38
Total	50	50	100	88	12	76
	1					
			Due t	ement: 88/100 to chance: 12/100 e chance: 76/100)	

Two coders Many coders Weighted coefficients

Correction for chance

How much of the observed agreement is above chance?

	A	В	С	D	Total
A	22	1	1	1	25
В	1	22	1	1	25
С	1	1 1 22		1	25
D	1	1	1	22	25
Total	25	25	25	25	100


<ロト <同ト < ヨト < ヨト

Two coders Many coders Weighted coefficients

3

-

Agreement:88/100Due to chance:4/100Above chance:84/100

Ron Artstein Quality control of corpus annotation through reliability measures

<ロト < 同ト < 三ト <

Two coders Many coders Weighted coefficients

	A	В	Total	
Α	44	6	50	
В	6	44	50	
Total	50	50	100	

	A	В	С	D	Total
А	22	1	1	1	25
В	1	22	1	1	25
С	1	1	22	1	25
D	1	1	1	22	25
Total	25	25	25	25	100

Agreement:	88/100
Due to chance:	12/100
Above chance:	76/100

Agreement:	88/100
Due to chance:	4/100
Above chance:	84/100

<ロト <同ト < 国ト < 国

_

Observed agreement (A_o): proportion of actual agreement Expected agreement (A_e): expected value of A_o

Amount of agreement above chance: Maximum possible agreement above chance:

$$A_o - A_e$$

 $1 - A_e$

Proportion of agreement above chance attained: $\frac{A_o - A_e}{1 - A_c}$

イロト イポト イヨト イヨト

Expected agreement

Big question: how to calculate the amount of agreement expected by chance (A_e) ?

<ロト <同ト < 国ト < 国

Two coders Many coders Weighted coefficients

S: same chance for all coders and categories

Number of category labels: **q**

Probability of one coder picking a particular category q_a : $\frac{1}{a}$

Probability of both coders picking a particular category q_a : $\left(\frac{1}{a}\right)^2$

Probability of both coders picking the same category:

$$\mathsf{A}_\mathsf{e}^{\mathcal{S}} = \mathbf{q} \cdot \left(\frac{1}{\mathbf{q}}\right)^2 = \frac{1}{\mathbf{q}}$$

Two coders Many coders Weighted coefficients

Are all categories equally likely?

	A	В	Total
А	44	6	50
В	6	44	50
Total	50	50	100

	Α	В	С	D	Total
А	44	6	0	0	50
В	6	44	0	0	50
С	0	0	0	0	0
D	0	0	0	0	0
Total	50	50	0	0	100

$$A_{o} = 0.88$$
$$A_{e} = \frac{1}{2} = 0.5$$
$$S = \frac{0.88 - 0.5}{1 - 0.5} = 0.76$$

$$A_{o} = 0.88$$
$$A_{e} = \frac{1}{4} = 0.25$$
$$S = \frac{0.88 - 0.25}{1 - 0.25} = 0.84$$

<ロト <同ト < 国ト < 国

_

Two coders Many coders Weighted coefficients

π : different chance for different categories

Total number of judgments: N

Probability of one coder picking a particular category q_a : $\frac{n_{q_a}}{N}$

Probability of both coders picking a particular category q_a : $\left(\frac{n_{q_a}}{N}\right)^2$

Probability of both coders picking the same category:

$$\mathsf{A}_{\mathsf{e}}^{\pi} = \sum_{q} \left(\frac{\mathsf{n}_{q}}{N}\right)^{2} = \frac{1}{N^{2}} \sum_{q} \mathsf{n}_{q}^{2}$$

イロト イポト イヨト イヨト

Two coders Many coders Weighted coefficients

18

Comparison of S and π

	A	В	С	Total			А	В	С	Total
А	44	6	0	50		А	77	1	2	80
В	6	44	0	50		В	1	6	3	10
С	0	0	0	0		С	2	3	5	10
Total	50	50	0	100		Total	80	10	10	100
A _o	= 0.8	38				$A_{o} = 0.88$				
S	$=\frac{0.8}{1}$	$\frac{8-1/3}{-1/3}$	² = 0).82		$S = \frac{0.88 - 1/3}{1 - 1/3} = 0.82$				
	$\pi = \frac{0.88 - 0.5}{1 - 0.5} = 0.76$							'	$\frac{5}{2} \approx 0$	
We can	We can prove that for any sample:						$\geq A_e^S$		$\pi \leq s$	S

イロト イポト イヨト イヨ

Prevalence

Is the following annotation reliable?

Two annotators disambiguate 1000 instances of the word love:

- emotion zero (as in tennis) Each annotator found:
- 995 instances of 'emotion' 5 instances of 'zero' The annotators marked **different** instances of 'zero'. **Agr: 99%!**

	emotion	zero	Total	$A_{o} = 0.99$
emotion	990	5	995	c 0.99–.5 0.00
zero	5	0	5	$S = \frac{0.995}{15} = 0.98$
Total	995	5	1000	$\pi = \frac{0.99 - 0.99005}{1 - 0.99005} \approx -0.005$

イロト イポト イヨト イヨト

Prevalence

Two coders Many coders Weighted coefficients

20

When one category is dominant:

- High agreement does not indicate high reliability
- $\bullet~\pi$ measures agreement on the rare category

Therefore, π is a good indicator of reliability.

- 4 同 1 - 4 日 1 - 4 日

Two coders Many coders Weighted coefficients

Different annotators have different interpretations of the instructions (bias/prejudice).

Does this affect expected agreement?

* 同 ト * ヨ ト * ヨ

Two coders Many coders Weighted coefficients

κ : different chance for different coders

Total number of items: **i** Probability of coder c_x picking a particular category q_a : $\frac{n_{c_xq_a}}{i}$ Probability of both coders picking category q_a : $\frac{n_{c_1q_a}}{i} \cdot \frac{n_{c_2q_a}}{i}$

Probability of both coders picking the same category:

$$\mathsf{A}_{\mathsf{e}}^{\kappa} = \sum_{q} \frac{\mathsf{n}_{c_1q}}{\mathsf{i}} \cdot \frac{\mathsf{n}_{c_2q}}{\mathsf{i}} = \frac{1}{\mathsf{i}^2} \sum_{q} \mathsf{n}_{c_1q} \mathsf{n}_{c_2q}$$

イロト イポト イヨト イヨト

Two coders Many coders Weighted coefficients

23

Comparison of π and κ

	A	В	С	Total		A	В	С	Total		
А	38	0	12	50	А	17	0	40	57		
В	0	12	0	12	В	0	26	0	26		
С	0	0	38	38	С	0	0	17	17		
Total	38	12	50	100	Total	17	26	57	100		
$A_{o} =$	$A_{o} = 0.88$						$A_o = 0.6$				
$\pi =$	$\pi = \frac{0.88 - 0.4016}{1 - 0.4016} \approx 0.7995$					$\pi = \frac{0.6 - 0.3414}{1 - 0.3414} \approx 0.3927$					
$\kappa =$	$\kappa = \frac{0.88 - 0.3944}{1 - 0.3944} \approx 0.8018$				$\kappa =$	$\frac{0.6-0}{1-0}$	0.2614 .2614	pprox 0.	4584		
					_	_	_				
We can	We can prove that for any sample: $A^{\pi}_{e} \geq A^{\kappa}_{e} \qquad \pi \leq \kappa$										

イロト イポト イヨト イヨト

Different interpretations of the instructions = lack of reliability.

• π preferable to κ

High agreement entails small differences between coders.

 \bullet Small numerical difference between π and κ

Differences among coders are diluted when more coders are used.

 \bullet Small numerical difference between π and κ

- 4 周 ト - 4 月 ト - 4 月 ト

Multiple coders

Multiple coders: Agreement is the proportion of agreeing pairs

Item	Coder 1	Coder 2	Coder 3	Coder 4	Pairs
а	Boxcar	Tanker	Boxcar	Tanker	2/6
b	Tanker	Boxcar	Boxcar	Boxcar	3/6
с	Boxcar	Boxcar	Boxcar	Boxcar	6/6
d	Tanker	Engine 2	Boxcar	Tanker	1/6
е	Engine 2	Tanker	Boxcar	Engine 1	0/6
f	Tanker	Tanker	Tanker	Tanker	6/6
g	Engine 1	Engine 1	Engine 1	Engine 1	6/6
	:	:	:	÷	

イロト イポト イヨト イヨト

Multiple coders

Numerical interpretation

• When 3 of 4 coders agree, only 3 of 6 pairs agree

Graphical representation

• Contingency table requires multiple dimensions...

Expected agreement

• The probability of agreement for an arbitrary pair of coders

- 4 同 ト 4 戸 ト 4 戸

K: multiple coders

Confusing terminology: K is a generalization of π .

Total number of judgments: N

Probability of arbitrary coder picking a particular category q_a : $\frac{n_{q_a}}{N}$

Probability of two coders picking a particular category q_a : $\left(\frac{n_{q_a}}{N}\right)^2$

Probability of two arbitrary coders picking the same category:

$$\mathsf{A}_{\mathsf{e}}^{\mathsf{K}} = \sum_{q} \left(\frac{\mathsf{n}_{q}}{\mathsf{N}}\right)^{2} = \frac{1}{\mathsf{N}^{2}} \sum_{q} \mathsf{n}_{q}^{2}$$

イロト イポト イヨト イヨト

28

Multiple coders – example

ltem	Cod-1	Cod-2	Cod-3	Cod-4	
(a)	Box	Box	Box	Box	6/6
(b)	Box	Box	Box	Box	6/6
(c)	E-2	E-2	E-2	E-2	6/6
(d)	Tank	Tank	Tank	Tank	6/6
(e)	E-1	E-1	E-1	E-1	6/6
(f)	E-1	Box	E-1	E-1	3/6
(g)	Tank	Tank	Tank	Tank	6/6
(h)	Box	Box	Box	Box	6/6
(i)	Box	Box	Box	Box	6/6
(j)	Box	Box	E-1	Box	3/6
(k)	E-2	E-2	E-2	E-2	6/6
(I)	Box	Tank	Box	Box	3/6
(m)	E-1	E-1	E-1	E-1	6/6
(n)	Tank	Tank	Tank	Tank	6/6
(o)	E-1	E-1	E-1	E-1	6/6
(p)	E-2	E-2	E-2	Tank	3/6
(q)	Box	Box	Box	Box	6/6
(r)	Box	Box	Box	Box	6/6
(s)	E-1	E-1	Tank	E-1	3/6
(t)	Box	Box	Box	Box	6/6
(u)	Box	Box	Box	Box	6/6
(v)	E-1	E-1	E-1	E-1	6/6
(w)	Tank	Tank	Tank	Tank	6/6
(x)	Box	Box	Box	Box	6/6
(y)	Box	Box	Box	Tank	3/6

25 items, 100 judgments: Box **46**, Tank **20**, E-1 **23**, E-2 **11**.

 $\begin{array}{l} \textit{Observed agreement:} \\ \textit{A}_{o} = 132/150 = 0.88 \end{array}$

Expected agreement: $A_e = .46^2 + .2^2 + .23^2 + .11^2 = 0.3166$ $K = \frac{0.88 - 0.3166}{1 - 0.3166} \approx 0.8244$

Some disagreements are more important than others

- Boxcar/engine more serious than engine 1/engine 2
- Depends on application

Need to count and weigh the disagreements

- Not only agreeing pairs
- Principled method of assigning weights

- 4 同 ト 4 戸 ト 4 戸

 $\begin{array}{l} \textit{Observed disagreement: } D_o = 1 - A_o \\ \textit{Expected disagreement: } D_e = 1 - A_e \end{array} \\ \end{array}$

Chance-corrected agreement:

$$1 - \frac{\mathsf{D}_{\mathsf{o}}}{\mathsf{D}_{\mathsf{e}}} = 1 - \frac{1 - \mathsf{A}_{\mathsf{o}}}{1 - \mathsf{A}_{\mathsf{e}}} = \frac{1 - \mathsf{A}_{\mathsf{e}} - (1 - \mathsf{A}_{\mathsf{o}})}{1 - \mathsf{A}_{\mathsf{e}}} = \frac{\mathsf{A}_{\mathsf{o}} - \mathsf{A}_{\mathsf{e}}}{1 - \mathsf{A}_{\mathsf{e}}}$$

イロト イポト イヨト イヨト

_

Three labels: Boxcar, Engine 1, Engine 2.

Three weights: **Identical judgments**: disagreement = 0 (agreement = 1) **Engine 1 / engine 2**: disagreement = 0.5 (agreement = 0.5) **Boxcar / engine**: disagreement = 1 (agreement = 0)

		Box		
Weight table:	Box	0	1	1
Weight lable:	E-1	1	0	0.5
	E-2	1	0.5	0

イロト イポト イヨト イヨト

Weighted coefficients

3

32

Weighted kappa κ_w

Observed disagreement:

	Box	E-1	E-2	
Box	29	1	0	30
E-1	1	39	10	50
E-2	0	10	10	20
	30	50	20	100

$$\begin{array}{c|cccc} 0 & 1 & 1 \\ 1 & 0 & 0.5 \\ 1 & 0.5 & 0 \end{array} = \begin{array}{c|ccccc} 0 & 1 & 0 & 1 \\ 1 & 0 & 5 & 6 \\ 0 & 5 & 0 & 5 \\ 1 & 6 & 5 & 12 \end{array}$$

Expected disagreement:

		E-1											
Box	9	15	6	30		0	1	1		0	15	6	21
E-1	15	25	10	50	٠	1	0	0.5	=	15	0	5	20
E-2	9 15 6	10	4	20		1	0.5	0		6	5	0	11
	30	50	20	100						21	20		

$$\kappa_w = 1 - rac{0.12}{0.52} pprox 0.77 \qquad \mathcal{K} = rac{.78 - .38}{1 - .38} pprox 0.65$$

▲ 同 ▶ → 三 ▶

Two coders Many coders Weighted coefficients

Krippendorff's α : a generalized weighted coefficient 33

Krippendorff's α :

- Generalization of K with various distance metrics
 - Allows multiple coders
- Similar to K when categories are nominal
- Allows numerical category labels
 - Related to ANOVA (analysis of variance)

Numerical judgments (e.g. magnitude estimation)

• Single-variable ANOVA, each item = separate level

 $F = \frac{\text{between-level variance}}{\text{error variance}}$

F = 1: Levels non-distinct; random

F > 1: Levels distinct to some extent; effect exists

error variance total variance

- 0: No error; perfect agreement
- 1: Random; no distinction
- 2: Maximal value

$$\alpha = 1 - \frac{\textit{error variance}}{\textit{total variance}}$$

- 4 同 1 - 4 回 1 - 4 回 1

Example of α

Item C-1 C-2 C-3 C-4 C-5 Mean Variance

icein	C 1	C 2	0.0	C 7	0.0	wican	variance
(a)	7	7	7	7	7	7.0	0.0
(b)	5	4	5	6	5	5.0	0.5
(c)	5	5	5	6	4	5.0	0.5
(d)	7	8	6	7	7	7.0	0.5
(e)	4	2	3	3	2	2.8	0.7
(f)	6	7	6	6	6	6.2	0.2
(g)	6	6	6	5	6	5.8	0.2
(h)	7	6	9	6	9	7.4	2.3
(i)	5	5	5	4	5	4.8	0.2
(j)	4	5	2	4	6	4.2	2.2
(k)	3	5	2	4	4	3.6	1.3
(I)	5	5	6	6	5	5.4	0.3
(m)	3	4	2	3	3	3.0	0.3 0.5
(n)	2	3	4	3	4	3.2	0.7 0.2
(o)	7	7	6	7	7	6.8	0.2
(p)	7	8	7	8	7	7.4	0.3
(q)	3	3	3	1	3	2.6	0.8
(r)	4	2	4	2	4	2.6 3.2	1.2
(s)	3	2	3	3	3	2.8	0.2
(t)	4	4	2	4	4	3.6	0.8
(u)	5	6	4	5	6	5.2	0.7
(v)	4	3	4	3	1	3.0	1.5
	6	6	7	5	7	6.2	0.7
(x)	4	5	2	4	3	3.6	1.3
(y)	4	5	5	6	5	5.0	0.5

Mean variance per item: 0.732							
Overall: 25 ite '1' 2 '2' 1 '6' 22 '7' 1	1 '3' 19 9 '8' 3	'4' 24 '9' 2					
Mean: 4.792,	Variance:	3.085					
$\alpha = 1 - \frac{0.732}{3.085} = 0.763$							
$F(24, 100) = \frac{12.891}{0.732} = 17.611, p < 1^{-15}$							

イロト イポト イヨト イヨト

Two coders Many coders Weighted coefficients

α with different distance metrics

General formula for $\boldsymbol{\alpha}$

$$\alpha = 1 - \frac{\textit{error variance}}{\textit{total variance}} = 1 - \frac{\textit{mean item distance}}{\textit{mean overall distance}} = 1 - \frac{\mathsf{D_o}}{\mathsf{D_e}}$$

Observed and expected disagreements computed with various distance metrics

<ロト <同ト < 国ト < 国

_

Interval α (numeric values)

$$\mathbf{d}_{ab} = (a-b)^2$$

Nominal α (all disagreements equal)

$$\mathbf{d}_{ab} = \begin{cases} 0 \text{ if } a = b \\ 1 \text{ if } a \neq b \end{cases}$$

Nominal $\alpha \approx K$

イロト イポト イヨト イヨト

_

Computing α : observed disagreement

Number of coders: **c** Number of items: **i** Distance of a single pair of labels q_a, q_b: **d**_{qaqb}

Observed disagreement

Number of judgment pairs per item: $\mathbf{c}(\mathbf{c}-1)$ Mean distance within item i: $\frac{1}{\mathbf{c}(\mathbf{c}-1)}\sum_{q_a}\sum_{q_b}\mathbf{n}_{iq_a}\mathbf{n}_{iq_b}\mathbf{d}_{q_aq_b}$ Mean distance within items: $D_o = \frac{1}{\mathbf{i}\mathbf{c}(\mathbf{c}-1)}\sum_{i}\sum_{q_a}\sum_{q_b}\mathbf{n}_{iq_a}\mathbf{n}_{iq_b}\mathbf{d}_{q_aq_b}$

< ロ > < 同 > < 回 > < 回 >

Two coders Many coders Weighted coefficients

Computing α : expected disagreement

Number of coders: **c** Number of items: **i** Distance of a single pair of labels q_a, q_b: **d**_{qaqb}

Expected disagreement:

Total number of judgment pairs:

Overall mean distance:

ic(ic - 1) $\mathsf{D}_{\mathsf{e}} = \frac{1}{\mathsf{ic}(\mathsf{ic}-1)} \sum_{q_a} \sum_{q_b} \mathsf{n}_{q_b} \mathsf{n}_{q_b} \mathsf{d}_{q_a q_b}$

イロト イポト イヨト イヨト

For nominal agree/disagree distinctions, ${\it K}\approx \alpha$

Use either coefficient

For grades of agreement, use α

• Take care with choosing the distance metric

- 4 同 1 - 4 日 1 - 4 日

Error models Reporting agreement values

Agreement measures are not hypothesis tests

- Evaluating magnitude, not existence/lack of effect
- Not comparing two hypotheses
- No clear probabilistic interpretation

- 4 周 ト - 4 月 ト - 4 月 ト

Error models Reporting agreement values

Agreement values (historical note)

Krippendorff 1980, page 147:

In a study by Brouwer et al. (1969) we adopted the policy of reporting on variables only if their reliability was above .8 and admitted variables with reliability between .67 and .8 only for drawing highly tentative and cautious conclusions. These standards have been continued in work on cultural indicators (Gerbner et al., 1979) and might serve as a guideline elsewhere.

Carletta 1996, page 252:

[Krippendorff] says that content analysis researchers generally think of K > .8 as good reliability, with .67 < K < .8 allowing tentative conclusions to be drawn.

イロト イポト イヨト イヨト

Agreement and error

Agreement metrics are difficult to understand.

Can we relate the amount of agreement to an error rate?

- Assumes existence of "correct" annotation
- Requires explicit model of annotator error

・ 同 ト ・ ヨ ト ・ ヨ ト

Model I: concentrated error

Error model assumptions (inspired by but different from Aickin):

- Items are either easy or hard
- Coders always agree on easy items
- Coders classify hard items at random

a: proportion of easy items

$$\mathsf{A}_{\mathsf{o}} = \mathbf{a} + (1 - \mathbf{a})\mathsf{A}_{\mathsf{e}}^{hard}$$

$$\mathbf{a} = \frac{\mathsf{A}_{\mathsf{o}} - \mathsf{A}_{\mathsf{e}}^{hard}}{1 - \mathsf{A}_{\mathsf{e}}^{hard}}$$

Ron Artstein Quality control of corpus annotation through reliability measures

イロト イボト イヨト イヨト

Error models Reporting agreement values

Model I: concentrated error

$$\mathbf{a} = rac{\mathsf{A}_{\mathsf{o}} - \mathsf{A}_{\mathsf{e}}^{hard}}{1 - \mathsf{A}_{\mathsf{e}}^{hard}}$$

Additional assumption: • $A_e = A_e^{hard}$

Interpretation: Dist. of hard judgments = dist. of easy items

Then:

$$\mathbf{a} = \mathbf{K} \ or \ \alpha$$

Interpretation: K or α = proportion of principled judgments

イロト イポト イヨト イヨト

_

Model II: evenly spread error

Error model assumptions:

- Fixed probability p of non-random judgment
- Dist. of random judgments = dist. of principled judgments

Category labels: q_1, \ldots, q_n True distribution: $P(q_1), \ldots, P(q_n)$

Expected agreement on an item of (true) category q

$$(p + (1 - p)\mathsf{P}(q))^2 + \sum_{q' \neq q} ((1 - p)\mathsf{P}(q'))^2$$

Error models Reporting agreement values

Model II: evenly spread error

-

$$E(A_{o}) = \sum_{q \in Q} P(q) \Big[(p + (1 - p)P(q))^{2} + \sum_{q' \neq q} ((1 - p)P(q'))^{2} \Big]$$

$$= p^{2} + (1 - p^{2}) \Big[\sum_{q \in Q} (P(q))^{2} \Big]$$

$$E(A_{e}) \approx \sum_{q \in Q} (P(q))^{2}$$

$$E(K) \approx \frac{[p^{2} + (1 - p^{2})E(A_{e})] - E(A_{e})}{1 - E(A_{e})} = p^{2}$$

<ロト <同ト < 国ト < 国

Error models Reporting agreement values

Comparing the two error models

Random judgments concentrated in specific items:

proportion of principled judgments = K

Random judgments uniformly spread among items:

proportion of principled judgments = \sqrt{K}

One category prevalent: K sensitive to rare categories

	A	В	С	Total
A	92	1	1	94
В	1	0	2	3
С	1	2	0	3
Total	94	3	3	100

$$\begin{array}{l} \mathsf{A}_{\mathsf{o}} = 0.92 \\ \mathsf{A}_{\mathsf{e}} = 0.8854 \\ \mathcal{K} = \frac{0.92 - 0.8854}{1 - 0.8854} \approx 0.30 \end{array}$$

Two categories prevalent: K ignores rare category

	A	В	С	Total
A	46	2	1	49
В	2	46	1	49
С	1	1	0	2
Total	49	49	2	100

$A_{\rm o}=0.92$	
$A_{\text{e}}=0.4806$	
$K = rac{0.92 - 0.4806}{1 - 0.4806} pprox 0.85$	

Latent Class Analysis

Model:

- Unknown number of underlying classes
- Each class has unique distribution for emitting category labels
- Estimate underlying probabilities from the observed labels

Allows analysis in terms of **diagnostic accuracy**:

- Probability of class given a label (or set of labels)
- Probability of labels given an underlying class

- 4 同 ト 4 戸 ト 4 戸