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Bias decreases in proportion to the

number of annotators

Ron Artstein and Massimo Poesio †

Abstract
The effect of the individual biases of corpus annotators on the value of

reliability coefficients is inversely proportional to the number of annotators
(less one). As the number of annotators increases, the effect of their individ-
ual preferences becomes more similar to random noise. This suggests using
multiple annotators as a means to control individual biases.

Keywords corpus annotation, reliability, kappa

13.1 Introduction

One of the problems of creating an annotated corpus is inter-annotator
reliability—the extent to which different annotators “do the same
thing” when annotating the corpus. Among the factors that may affect
reliability is what we will call the individual annotator bias, informally
thought of as the differences between the individual preferences of the
various annotators. Methods to control bias include the development of
clear annotation schemes, detailed and explicit manuals, and extensive
training. Nevertheless, some individual differences in the interpretation
of such schemes and manuals will always remain. We suggest another
means to control for bias—increasing the number of annotators. We
give a proof that the effect of individual annotator bias on standard
measures of reliability decreases in proportion to the number of anno-
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tators (or, to be pedantic, in proportion to the number of annotators
less one).

In order to test inter-annotator reliability, two or more annotators
annotate the same text, and their annotations are compared using some
statistical measure. Since the publication of Carletta (1996) it has been
common in computational linguistics to use a family of related but dis-
tinct agreement coefficients often subsumed under the name “kappa”.
Recently, Di Eugenio and Glass (2004) have pointed out that differ-
ent members of this family make different assumptions about, among
other things, individual annotator bias: some coefficients treat this bias
as noise in the data (e.g. π, Scott, 1955), while others treat it as a gen-
uine source of disagreement (e.g. κ, Cohen, 1960). Di Eugenio and Glass
demonstrate, using examples with two annotators, that the choice of
agreement coefficient can affect the reliability values.

In this paper we use the difference between the two classes of coef-
ficients in order to quantify individual annotator bias. We then show
that this measure decreases in proportion to the number of annotators.
Of course, multiple annotators may still vary in their individual pref-
erences. However, as the number of annotators grows, the effect of this
variation as a source of disagreement decreases, and it becomes more
similar to random noise.

While the results of this study are purely mathematical, they have
also been tested in the field: we conducted a study of the reliability
of coreference annotation using 18 subjects (the largest such study we
know of), and we found that the differences between biased and un-
biased agreement coefficients were orders of magnitude smaller than
any of the other variables that affected reliability values. This shows
that using many annotators is one way to overcome individual biases
in corpus annotation.

13.2 Agreement among two coders: pi and kappa

We start with a simple case, of two annotators who have to classify
a set of items into two categories. As a concrete example, we will call
our annotators Alice and Bill, call the categories “yes” and “no”, and
assume they classified ten items with the following results.

Alice: Y Y N Y N Y N N Y Y
Bill: Y Y N N Y Y Y N Y Y

Since Alice and Bill agree on the classification of seven of the ten items,
we say that their observed agreement is 7/10 or 0.7. Generally, when
two annotators classify a set of items into any number of distinct and
mutually exclusive categories, their observed agreement is simply the
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proportion of items on whose classification they agree.
Observed agreement in itself is a poor measure of inter-annotator

reliability, because a certain amount of agreement is expected purely
by chance; this amount varies depending on the number of categories
and the distribution of items among categories. For this reason it is
customary to report an agreement coefficient in which the observed
agreement Ao is discounted by the amount of agreement expected by
chance Ae. Two such coefficients, suitable for judging agreement be-
tween just two annotators, are π (Scott, 1955) and κ (Cohen, 1960);
both are calculated according to the following formula.

π, κ =
Ao − Ae

1 − Ae

The difference between π and κ is in the way the expected agreement
is calculated. Both coefficients define expected agreement as the prob-
ability that the two annotators will classify an arbitrary item into the
same category. But while π assumes that this probability is governed
by a single distribution, κ assumes that each annotator has a separate
probability distribution.

Let’s see what this means in our toy example. According to π, we
calculate a single probability distribution by looking at the totality of
judgments: there are 13 “yes” judgments and 7 “no” judgments, so the
probability of a “yes” judgment is 0.65 while that of a “no” judgment
is 0.35; overall, the probability that the two annotators will classify
an arbitrary item into the same category is 0.652 + 0.352 = 0.545.
According to κ, we calculate a separate probability distribution for each
coder: for Alice the probability of a “yes” judgment is 0.6 and that of a
“no” judgment is 0.4, while for Bill the probability of a “yes” judgment
is 0.7 and that of a “no” judgment is 0.3; the overall probability that the
two annotators will classify an arbitrary item into the same category is
0.6 · 0.7+ 0.4 · 0.3 = 0.54, slightly lower than the probability calculated
by π. This, in turn, makes the value of κ slightly higher than π.

π =
0.7− 0.545

1 − 0.545
≈ 0.341 κ =

0.7− 0.54

1 − 0.54
≈ 0.348

More generally, for π we use P(k), the overall probability of assigning
an item to category k, which is the total number of such assignments
by both coders nk divided by the overall number of assignments, which
is twice the number of items i. For κ we use P(k|c), the probability of
assigning an item to category k by coder c, which is the number of such
assignments nck divided by the number of items i.

P(k) =
1

2i
nk P(k|c) =

1

i
nck
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According to π, the probability that both coders assign an item to a
particular category k ∈ K is P(k)2, so the expected agreement is the
sum of P(k)2 over all categories k ∈ K. As for κ, the probability that
the two coders c1 and c2 assign an item to a particular category k ∈ K is
P(k|c1)P(k|c2), so the expected agreement is the sum of P(k|c1)P(k|c2)
over all categories k ∈ K.

Aπ

e =
∑

k∈K

P(k)2 Aκ

e =
∑

k∈K

P(k|c1)P(k|c2)

Since P(k) is the mean of P(k|c1) and P(k|c2) for each category k ∈ K,
it follows that for any set of coding data, Aπ

e ≥ Aκ
e , and consequently

π ≤ κ, with the limiting case obtaining when the distributions of the
two coders are identical.

13.3 Measuring the bias

Di Eugenio and Glass (2004) point out that π and κ reflect two different
conceptualizations of the reliability problem (they refer to π and κ by
the names κS&C and κCo, respectively). For π, differences between the
coders in the observed distributions of judgments are considered to be
noise in the data, whereas for κ they reflect the relative biases of the
individual coders, which is one of the sources of disagreement (Cohen,
1960, 40–41). Here we will show how this difference can be quantified
and related to an independent measure—the variance of the individual
coders’ distributions.

We should note that a single coder’s bias cannot be measured in and
of itself—it can only be measured by comparing the coder’s distribution
of judgments to some other distribution. Our agreement coefficients do
not include reference to any source external to the coding data (such
as information about the distribution of categories in the real world),
and therefore we cannot measure the bias of an individual coder, but
only the bias of the coders with respect to each other.

We are aware of several proposals in the literature for measuring
individual coder bias. Zwick (1988) proposes a modified χ2 test (Stu-
art, 1955), and Byrt et al. (1993) define a “Bias Index” which is the
difference between the individual coders’ proportions for one category
label (this only applies when there are exactly two categories). Since
we are interested in the effect of individual coder bias on the agreement
coefficients, we define B, the overall bias in a particular set of coding
data, as the difference between the expected agreement according to π
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and the expected agreement according to κ.

B = Aπ

e − Aκ

e =
∑

k∈K

P(k)2 −
∑

k∈K

P(k|c1)P(k|c2)

=
∑

k∈K

(

P(k|c1) + P(k|c2)

2

)2

− P(k|c1)P(k|c2)

=
∑

k∈K

(

P(k|c1) − P(k|c2)

2

)2

The bias is a measure of variance. Take c to be a random variable, with
equal probabilities for each of the two coders: P(c1) = P(c2) = 0.5.
For each category k ∈ K, we calculate the mean µ and variance σ2

of P(k|c).

µP(k|c) =
P(k|c1) + P(k|c2)

2

σ2
P(k|c) =

(P(k|c1) − µP(k|c))
2 + (P(k|c2) − µP(k|c))

2

2

=

(

P(k|c1) − P(k|c2)

2

)2

We find that the bias B is the sum of the variances of P(k|c) for all
categories k ∈ K.

B =
∑

k∈K

σ2
P(k|c)

This is a convenient way to quantify the relative bias of two coders. In
the next section we generalize π and κ to apply to multiple coders, and
see that the bias drops in proportion to the number of coders.

13.4 Agreement among multiple coders

We now provide generalizations of π and κ which are applicable when
the number of coders c is greater than two. The generalization of π is
the same as the coefficient which is called, quite confusingly, κ by Fleiss
(1971). We will call it π because it treats individual coder bias as noise
in the data and is thus better thought of as a generalization of Scott’s π,
reserving the name κ for a proper generalization of Cohen’s κ which
takes bias as a source of disagreement. As far as we are aware, ours is the
first generalization of κ to multiple coders—other sources which claim
to give a generalization of κ actually report Fleiss’s coefficient (e.g.
Bartko and Carpenter, 1976, Siegel and Castellan, 1988, Di Eugenio
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and Glass, 2004).

With more than two coders we can no longer define the observed
agreement as the percentage of items on which there is agreement,
since there will inevitably be items on which some coders agree amongst
themselves while others disagree. The amount of agreement on a par-
ticular item is therefore defined as the proportion of agreeing judg-
ment pairs out of the total number of judgment pairs for the item. Let
nik stand for the number of times an item i is classified in category k
(i.e. the number of coders that make such a judgment). Each category k
contributes

(

nik

2

)

pairs of agreeing judgments for item i; the amount of

agreement agr
i
for item i is the sum of

(

nik

2

)

over all categories k ∈ K,

divided by
(

c

2

)

, the total number of judgment pairs per item.

agri =
1
(

c

2

)

∑

k∈K

(

nik

2

)

=
1

c(c − 1)

∑

k∈K

nik(nik − 1)

The overall observed agreement is the mean of agr
i
for all items i ∈ I .

Ao =
1

i

∑

i∈I

agr
i
=

1

ic(c − 1)

∑

i∈I

∑

k∈K

nik(nik − 1)

Since agreement is measured as the proportion of agreeing judgment
pairs, the agreement expected by chance is the probability that any
given pair of judgments for the same item would agree; this, in turn,
is equivalent to the probability that two arbitrary coders would make
the same judgment for a particular item by chance. For π we use P(k),
the overall probability of assigning an item to category k, which is
the total number of such assignments by all coders nk divided by the
overall number of assignments, which is the number of items i multiplied
by the number of coders c. For κ we use P(k|c), the probability of
assigning an item to category k by coder c, which is the number of
such assignments nck divided by the number of items i.

P(k) =
1

ic
nk P(k|c) =

1

i
nck

According to π, the probability that two arbitrary coders assign an item
to a particular category k ∈ K is P(k)2, so the expected agreement is
the sum of P(k)2 over all categories k ∈ K. As for κ, the probability
that two particular coders cm and cn assign an item to category k ∈ K
is P(k|cm)P(k|cn); since all coders judge all items, the probability that
an arbitrary pair of coders assign an item to category k is the arithmetic
mean of P(k|cm)P(k|cn) over all coder pairs cm, cn, and the expected
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agreement is the sum of this probability over all categories k ∈ K.

Aπ

e =
∑

k∈K

P(k)2 Aκ

e =
∑

k∈K

1
(

c

2

)

c−1
∑

m=1

c
∑

n=m+1

P(k|cm)P(k|cn)

It is easy to see that Aκ
e for multiple coders is the mean of the two-coder

Aκ
e values from section 13.2 for all coder pairs.
We start with a numerical example. Instead of two annotators we

now have four; furthermore, it so happens that Claire gives exactly the
same judgments as Alice, and Dave gives exactly the same judgments
as Bill.

Alice, Claire: Y Y N Y N Y N N Y Y
Bill, Dave: Y Y N N Y Y Y N Y Y

The expected agreement according to π remains 0.545 as in the case of
just Alice and Bill, since the overall proportion of “yes” judgments is
still 0.65 and that of “no” judgments is still 0.35. But for the calculation
of expected agreement according to κ we also have to take into account
the expected agreement between Alice and Claire and the expected
agreement between Bill and Dave. Overall, the probability that two
arbitrary annotators will classify an item into the same category is
1
6 [0.62 +4 ·0.6 ·0.7+0.72]+ 1

6 [0.42 +4 ·0.4 ·0.3+0.32] = 0.54333 . . .; this
value is still lower than the probability calculated by π, but higher than
it was for two annotators. If we add a fifth annotator with the same
judgments as Alice and Claire and a sixth with the judgment pattern of
Bill and Dave, expected agreement according to π remains 0.545 while
expected agreement according to κ rises to 0.544. It appears, then, that
as the number of annotators increases, the value of Aκ

e approaches that
of Aπ

e . We now turn to the formal proof.
We start by taking the formulas for expected agreement above and

putting them into a form that is more useful for comparison with one
another.

Aπ

e =
∑

k∈K

P(k)2 =
∑

k∈K

(

1

c

c
∑

m=1

P(k|cm)

)2

=
∑

k∈K

1

c2

c
∑

m=1

c
∑

n=1

P(k|cm)P(k|cn)

Aκ

e =
∑

k∈K

1
(

c

2

)

c−1
∑

m=1

c
∑

n=m+1

P(k|cm)P(k|cn)

=
∑

k∈K

1

c(c − 1)

(

c
∑

m=1

c
∑

n=1

P(k|cm)P(k|cn) −

c
∑

m=1

P(k|cm)2

)
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The overall bias is the difference between the expected agreement ac-
cording to π and the expected agreement according to κ.

B = Aπ

e − Aκ

e

=
1

c − 1

∑

k∈K

1

c2

(

c

c
∑

m=1

P(k|cm)2 −

c
∑

m=1

c
∑

n=1

P(k|cm)P(k|cn)

)

We now calculate the mean µ and variance σ2 of P(k|c), taking c to
be a random variable with equal probabilities for all of the coders:
P(c) = 1

c
for all coders c ∈ C.

µP(k|c) =
1

c

c
∑

m=1

P(k|cm)

σ2
P(k|c) =

1

c

c
∑

m=1

(P(k|cm) − µP(k|c))
2

=
1

c

c
∑

m=1

P(k|cm)2 − 2µP(k|c)
1

c

c
∑

m=1

P(k|cm) + µ2
P(k|c)

1

c

c
∑

m=1

1

=

(

1

c

c
∑

m=1

P(k|cm)2

)

− µ2
P(k|c)

=
1

c2

(

c

c
∑

m=1

P(k|cm)2 −

c
∑

m=1

c
∑

n=1

P(k|cm)P(k|cn)

)

The bias B is thus the sum of the variances of P(k|c) for all categories
k ∈ K, divided by the number of coders less one.

B =
1

c − 1

∑

k∈K

σ2
P(k|c)

Since the variance does not increase in proportion to the number of
coders, we find that the more coders we have, the lower the bias; at the
limit, κ approaches π as the number of coders approaches infinity.

13.5 Conclusion

We have seen that one source of disagreement among annotators, indi-
vidual bias, decreases as the number of annotators increases. This does
not mean that reliability increases with the number of annotators, but
rather that the individual coders’ preferences become more similar to
random noise. This suggests using multiple annotators as a means for
controlling bias.
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There is a further class of agreement coefficients which allow for
gradient disagreements between annotators, for example weighted
kappa κw (Cohen, 1968) and α (Krippendorff, 1980). Passonneau
(2004), for example, uses α to measure reliability of coreference anno-
tation, where different annotators may partially agree on the identity
of an anaphoric chain. We cannot treat these coefficients here due to
space limitations, but the same result holds for gradient coefficients—
bias decreases in proportion to the number of annotators. We performed
an experiment testing the reliability of coreference annotation among
18 naive subjects, using α and related measures (Poesio and Artstein,
2005); we found that the effect of bias on the agreement coefficients
was substantially lower than any of the other variables that affected
reliability.
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